Model Convolution: A Computational Approach to Digital Image Interpretation
نویسندگان
چکیده
Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called "model-convolution," which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory.
منابع مشابه
A FILTERED B-SPLINE MODEL OF SCANNED DIGITAL IMAGES
We present an approach for modeling and filtering digitally scanned images. The digital contour of an image is segmented to identify the linear segments, the nonlinear segments and critical corners. The nonlinear segments are modeled by B-splines. To remove the contour noise, we propose a weighted least q m s model to account for both the fitness of the splines as well as their approximate cur...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملA Novel Patch-Based Digital Signature
In this paper a new patch-based digital signature (DS) is proposed. The proposed approach similar to steganography methods hides the secure message in a host image. However, it uses a patch-based key to encode/decode the data like cryptography approaches. Both the host image and key patches are randomly initialized. The proposed approach consists of encoding and decoding algorithms. The encodin...
متن کاملParallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach
There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...
متن کاملFeasibility of detecting and localizing radioactive source using image processing and computational geometry algorithms
We consider the problem of finding the localization of radioactive source by using data from a digital camera. In other words, the camera could help us to detect the direction of radioactive rays radiation. Therefore, the outcome could be used to command a robot to move toward the true direction to achieve the source. The process of camera data is performed by using image processing and computa...
متن کامل